Synthesis and Herbicidal Activity of Small-Ring Compounds

T. R. HOPKINS, R. P. NEIGHBORS, AND L. V. PHILLIPS

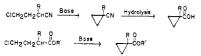
A series of cycloaliphatic carboxamides was prepared and screened for herbicidal activity. Specific structural requirements for activity were determined. In general, the cyclopropanecarboxamides were more active than the larger ring homologs. One material, *N*-(3,4-dichlorophenyl)cyclopropanecarboxamide (cypromid), has been successfully field tested and introduced for commercial use as a selective postemergence herbicide in corn.

The discovery of the postemergence herbicidal activity of several cyclopropanecarboxamides resulted in the initiation of a synthesis and screening program of a broad spectrum of cyclopropane- and other cycloaliphatic carboxamides. Approximately 130 compounds were prepared and evaluated as post- and pre-emergence herbicides. This series enabled certain generalizations to be made for correlation of structure with herbicidal activity. Two compounds, *N*-(3,4-dichlorophenyl)cyclopropanecarboxamide (A) and *N*-(3,4-dichlorophenyl)-1-methylcyclopropanecarboxamide (B), have been selected for further development and possible commercialization.

Compound A, which has been given the trivial name cypromid (Clobber), has been introduced as a selective postemergence herbicide in corn. The field development and results have been reported recently (6).

Synthesis of Compounds

Several general routes were utilized for the synthesis of the required intermediate acids and esters. The procedures employed included the following:


Method A. The addition of diazo compounds (diazomethane, ethyl diazoacetate, etc.) to olefins or α -olefinic esters (3)

$$\mathbf{R}\mathbf{C}\mathbf{H} = \overset{\mathsf{C}}{\mathsf{C}}\cdot\overset{\mathsf{C}}{\mathsf{COR}^{"}} + \mathbf{C}\mathbf{H}_{2}\mathbf{N}_{2} \longrightarrow \mathcal{L}pyrazoline\mathcal{J} \xrightarrow{\Delta} \mathbf{R} \bigvee \overset{\mathsf{T}}{\overset{\mathsf{C}}{\mathsf{C}}}\overset{\mathsf{C}}{\mathsf{C}}\mathbf{R}^{"}$$
$$\mathbf{R}\mathbf{C}\mathbf{H} = \mathbf{C}\mathbf{H}_{2} + \mathbf{N}_{2}\mathbf{C}\mathbf{H}\overset{\mathsf{C}}{\mathsf{C}}\mathbf{C}_{2}\mathbf{H}_{5} \longrightarrow \mathcal{L}pyrazoline\mathcal{J} \xrightarrow{\Delta} \mathbf{R} \bigvee \overset{\mathsf{C}}{\overset{\mathsf{C}}{\mathsf{C}}}\overset{\mathsf{C}}{\mathsf{C}}\mathbf{C}_{2}\mathbf{H}_{5}$$

Method B. Addition of halocarbenes to α -olefinic esters (18).

$$\mathbf{RCH} = \mathbf{C} \cdot \mathbf{COR}^{\mathsf{H}} + \mathbf{Ci_2C} \longrightarrow \mathbf{Ci} \underbrace{\mathbf{Ci} \ \mathbf{R}^{\mathsf{H}} \mathbf{O}}_{\mathsf{H}} \mathbf{Ci_2C}$$

Method C. Base-induced cyclization of γ -halonitriles or γ -haloesters (16).

Method D. Alkylation of benzyl cyanides with dihaloalkanes followed by cyclization and hydrolysis to the acids (*10*).

Kansas City Division, Gulf Research & Development Co., Merriam, Kan.

CN Hydrolysis

Method E. Cleavage of α -substituted butyrolactones with hydrogen chloride to produce γ -chlorobutyric acids which were esterified with methanol, then cyclized with base to the desired esters (4)

Method F. Base-catalyzed alkylation of monoalkylmalonic esters with ethylene oxide to produce α -substituted butyrolactones which were then treated as in Method E to give the desired esters.

$$\begin{array}{c} \overset{0}{\scriptstyle{\mathsf{C}}} \overset{\mathrm{Coc}_{\mathsf{2}^{\mathsf{H}_{\mathsf{3}}}}}{\scriptstyle{\mathsf{R}} \overset{\mathsf{C}}{\leftarrow} \mathsf{H}} + & \textcircled{D} \xrightarrow{\mathsf{NaOCH}_{\mathsf{3}}} & \mathsf{R} & \overset{0}{\smile} & \overset{\mathsf{Method}}{\longrightarrow} & \operatornamewithlimits{D}_{\mathsf{R}} \overset{0}{\overset{\mathsf{C}} \circ \mathsf{OCH}_{\mathsf{3}}} \\ \overset{0}{\scriptstyle{\mathsf{C}}} \overset{0}{\scriptstyle{\mathsf{C}} \circ \mathsf{C}} \overset{\mathsf{C}}{\overset{\mathsf{C}}} \overset{\mathsf{C}}} \overset{\mathsf{C}}{\overset{\mathsf{C}}} \overset{\mathsf{C}}{\overset{\mathsf{C}}} \overset{\mathsf{C}}} \overset{\mathsf{C}}{\overset{\mathsf{C}}} \overset{\mathsf{C}}{\overset{\mathsf{C}}} \overset{\mathsf{C}}} \overset{\mathsf{C}}{\overset{\mathsf{C}}} \overset{\mathsf{C}}} \overset{\mathsf{C}} \overset{\mathsf{C}} \overset{\mathsf{C$$

Method G. Alkylation of malonic ester with dihaloalkanes followed by cyclization, hydrolysis, and decarboxylation to the mono acid (*15*).

The acids or esters were then converted to the amides or anilides by one of the following methods:

Method X. Reaction of the desired amine or aniline with an acid chloride in the presence of a halogen acid acceptor.

$$\begin{array}{c} \text{RCOCI} + \text{R'NH}_2 \xrightarrow{\text{Base}} \text{R-C-NHR'} \\ \parallel \\ \text{O} \end{array}$$

Method Y. Reaction of an acid with an aromatic phosphazo compound.

$$2 \operatorname{RCOH}^{O} + \underbrace{\times}_{h}^{O} \xrightarrow{N \subseteq P - NH} \underbrace{\swarrow}_{X_{n}} \longrightarrow 2 \operatorname{RC}^{O} \operatorname{NH} \underbrace{\swarrow}_{X_{n}} + (HPC_{2})_{r}$$

Method Z. Reaction of an ester with the desired aniline and an equivalent of sodium alkoxide (5).

Structures of previously unreported compounds were verified by quantitative elemental determination of three or more elements (accuracy within $\pm 0.3\%$) and by infrared spectroscopy.

Biological Screening Methods

Postemergence tests were run at a rate of 5 pounds per acre. Seeds were sown in 4-inch clay pots containing a 1:1:1 fertilized mixture of clay loam, peat, and sand. The plants were sprayed 1 week after emergence. The chemical was applied as an emulsion or dispersion in an emulsifier-xylene mixture with water at 60 gallons per acre spray volume and 40 p.s.i. The treated plants were placed in the greenhouse at 85° F. day and 75° F. night temperatures. Plants treated were tomato, alfalfa, wheat, flax, radish, oats, sugar beets, corn, and millet. Ratings were taken 2 weeks after treatment.

Pre-emergence tests were run at a rate of 10 pounds per acre. Flats (10 imes 12 imes 2.5 inches) were filled with alluvial soil and seeded, and the seeds covered with 0.5 inch of soil. The chemical was dissolved in acetone and sprinkled evenly over the surface. The acetone was allowed to evaporate and the flat was watered thoroughly. The flat was seeded with alfalfa, brome, flax, oats, radish, and sugar beets, then placed in the greenhouse and held at 60° F, night and 70° F, day temperatures. Another flat, treated as described and seeded with corn, coxcomb, cotton, crabgrass, millet, and soybeans, was held at 80° F. day and 70° F. night temperatures. The test was evaluated after 28 days.

Ratings were made on a 0 to 4 basis for each plant species as follows: 0, no effect; 1, 0 to 25% foliage affected; 2, 26 to 75% foliage affected; 3, 76 to 99%foliage affected; and 4, all plants dead.

Total herbicidal activity is recorded in Tables I to IX. This represents a summation of the injury to all the plant species treated. Thus, a chemical which received a rating of 4 on each of the 9 species of plants in the postemergence screen would have a rating of 36. Likewise, a chemical which resulted in total kill in the preemergence screen would have a rating of 48 (rating of 4 on each of 12 plant species). In some instances a chemical was screened on less than the usual number of plant species. The activity rating for these materials is represented by the fraction, summation of injury to species treated/ $4 \times$ number of species treated. This

method of expressing activity rating is an indication of total activity only and not selectivity.

Results and Discussion

Amides of cyclopropanecarboxylic acids appeared to have the greatest potential as useful herbicides, and a major portion of the research effort was directed toward the synthesis and screening of these materials. The synthesis and screening data for the cyclopropanecarboxamides are compiled in Tables I through V. A study of the biological data indicates that many of the Naromatic cyclopropanecarboxamides (Tables I and II) possess a high degree of herbicidal activity and in general they are more active than N-aliphatic cyclopropanecarboxamides (Table III). Herbicidal activity appears to be enhanced when the aromatic ring of the anilides is substituted either in the meta or para position or in both positions by halogen, methyl, or trifluoromethyl groups. Substitution in the ortho position by chlorine, bromine, or methyl groups, however, seems to reduce herbicidal activity (particularly postemergence). The N (3,4-dichlorophenyl)amide is the most active of the series.

The presence of a substituent and the position of the substituent on the cyclopropyl ring also affect herbicidal activity as shown in Table IV. This effect is more clearly illustrated in Table V, in which the 3,4-dichloroanilides of a series of substituted cyclopropanecarboxylic acids are compared. In general, large bulky groups in any position on the cyclopropyl ring drastically reduce herbicidal activity. Activity is greatest when the cyclopropyl ring is unsubstituted or is substituted in the α position with a relatively small group such as methyl.

The cyclopropanecarboxamides which have outstanding pre-emergence and postemergence activity are summarized in Tables VI and VII, respectively.

Increasing the alicyclic ring to four carbon atoms results in a general decrease in herbicidal activity, shown in the series of cyclobutanecarboxamides listed in Table VIII. A further increase of the ring to five or six carbon atoms causes an even greater decrease in activity. The effect of alicyclic ring size upon herbicidal activity is depicted in Table IX.

The cyclopropanecarboxanilides were shown to inhibit photochemical activity (Hill reaction) of isolated chloroplasts. The Hill reaction involves the ability of plants to oxidize water to molecular oxygen and to

Table I. Herbicidal Activity of Aromatic Cyclopropanecarboxamides									
$\sum_{\mathbf{r}} \sum_{\mathbf{r}} \sum$									
\mathbf{R}_1	\mathbf{R}_2	M.P., ° C.	Yield, %	Method of Preparation	Post- emergence Activity	Pre- emergence Activity			
Н	1-Naphthyl	174-5.5	45	Ε, Χ	0	16			
Н	2-Thiazolyl	164–6	24	Е, Х	21	44			
Н	2-Pyridyl	86-7.5	19	Е, Х	15	14			
Н	2-Pyrimidyl	130-1.5	29	Е, Х	1	18			
CH_3	Phenyl	69-70	91	Е, Х	18				
$CH_2CH=-CH_2$	Phenyl	120–3/5 mm.«	77	Е, Х	4	35			
^a B.p. ° C./mm. Hg.									

Table II. Herbicidal Activity of Cyclopropanecarboxanilides

				4 5					
								Σ Post-	Σ Pre- emer-
					М.Р.,	Yield.	Method of	emer- gence	gence
R	\mathbf{R}_1	R_2	R₃	R_4	° C.		Preparation	Activity	Activity
Cl	Н	Н	Н	Н	110-11	93	Е, Х	0	39
F	Н	Н	Н	Н	116.5–18	76	Е, Х	19	• • •
Н	Cl	Н	Н	Н	147-8.5	74	Е, Х	33	42
Н	Br	Н	Н	Н	142–4	93	Ε, Χ	27	42
Н	F	Н	Н	Н	124–6	84	Ε, Χ	34	41
Н	I	Н	Н	Н	132–4	82	Е, Х	20	32
Н	Н	Cl	Н	Н	163-5	94	Ε, Χ	35	44
Н	Н	Br	Н	Н	192–4	96	Ε, Χ	21	41
Н	Н	F	Н	Н	160-2	93	Ε, Χ	26	17
Cl	Cl	Н	Н	Н	137-8	57	Е, Х	8	21
Cl	Н	Cl	Н	Н	155-6	83	E, X	4	21
Cl	Н	H	Cl	Н	163-4	82	E, X	5	18
H	Cl	Н	Cl	H	172-4	94	E, X	10	8
н	Cl	Cl	H.	Н	130-1	90	E, Z	36	44
Н	Br	Br	Н	н	126-8	90	E, X	30/32*	30
F	H	F	н	H	142-3.5	90	E, X E, X	30/ <i>32</i> 4	6
F	H	H	F	H	142-3.5	90 80	E, X	24	25
Cl	Н	Cl	H	Cl	210-11	94	Е, Х Е, Х	24	4
									18
Cl	Н	Cl	Cl	Н	170-2	95	E, X	3	10
CH_3	H	Н	Н	Н	128.5-30	82 70	E, X	5	
H	CH 3	H	Н	Н	100-101	79 07	E, X	29	15/44
Н	Н	CH ₃	Н	Н	165-6.5	87	E, X (2)	10	11
Н	CH 3	CH 3	Н	Н	137-9	80	E, X	21	10
Н	CH 3	Н	CH 3	Н	138-40	80	E, X	1	26
CH3	Н	CH ₃	Н	CH 3	160.5-2	69	Ε, Χ	0	16
CH 3	Н	Н	Cl	Н	1645	82	Е, Х	0	15
CH_3	Cl	Н	Н	Н	1756	80	Е, Х	0	5
Cl	Н	Н	CH_3	Н	1389	53	E, X	0	16
CH_3	Н	Н	NO_2	Н	2023.5	68	E, X	3	5
Cl	Н	NO_2	Н	Н	1802	45	E, X	1	12
Cl	CF ₃	Н	Н	Н	117.5-9	67	Ε, Χ	0	22
Н	CF ₃	Cl	Н	Н	121-3	82	Ε, Χ	31	30
Н	CF_3	Н	Н	Н	121-2.5	74	E, X	20	31
Н	CH ₃	Cl	Н	Н	152-4	95	E, X	27/32	25
Н	Cl	CH₃	н	Н	144-5	82	Ε, Χ	29	30
Н	CH ₃ O	CH ₃ O	Н	Н	1378	47	E, X	10	4
CH ₃ O	Н	Н	Cl	н	97-9	80	Е, Х	14	14
Н	CH ₃ O	Н	Н	Н	105-6	37	Ε, Χ	19	42
Н	CH3CONH	Н	Н	Н	181-3	56	A, X	4	0
Н	Cyclopropane-	Н	н	н	160-1.5	86	A, X	3	9
	carbonyloxy	11			100 1.5	00	<i>n</i> , <i>n</i>	5	,
Н	Н	Cyclopropane-	Н	Н	299-301	66	Α, Χ	3	6
		carbonylamino				_ ·			_
Н	Н	NO_2	Н	Н	180-2	76	Α, Χ	5	38
Н	Н	CN	Н	Н	140-1	89	Α, Χ	18	40
Н	Н	OH	Н	Н	208-10	46	Α, Χ	2	0
Н	Н	C_2H_5OCO	Н	Н	161-2.5	90	Α, Χ	2	0
CH ₃ O	Н	Н	\mathbf{NO}_2	Н	192–4	50	Α, Χ	0	21
CH 3	Н	Cl	Cl	Н	182–3	92	Α, Χ	0	3
CH ₃	Н	CH ₃	CH_3	Н	166-7.5	50	Α, Χ	0	0

	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$							
\mathbf{R}_1	R_2	M.P., ° C.	2 Yield, %	Method of Preparation	Post- emergence Activity	Pre- emergence Activity		
Н	Н	124-6	60	E, X (17)	5	15		
Н	CH 3	55-7	88	Е, Х	0	28		
Н	$CH_2 - CH = CH_2$	35-6	80	Ε, Χ	2	0		
Н	CH_2CH_2OH	43-5	77	Ε, Χ	0	6		
Н	C(CH ₃) ₃	137-9	81	Ε, Χ	0	0		
Н	$CH_2 - C = CCH_2Cl$	78.5-80	58	Ε, Χ	14	32		
Н	$CH_2CO_2C_2H_5$	77-8	29	Ε, Χ	0	6		
Н	Cyclopropyl	111-2	69	E, X (8)	0	11		
Н	Cyclopentyl	1156	61	Ε, Χ	4	0		
Н	Cyclohexyl	1389.5	78	E, X (<i>l</i>)	2	7		
C_4H_9	C_4H_9	104–7/5 mm.ª	74	Ε, Χ	9	11		
CH ₂ C ^a B.p. ° C./mr	CH ₂ OCH ₂ CH ₂ n. Hg.	42-3	77	Ε, Χ	2	15		

Table III. Herbicidal Activity of Aliphatic Cyclopropanecarboxamides

Table IV. Herbicidal Activity of Cyclopropanecarboxamides Containing Substituents on the Cyclopropyl Ring

			R3 R	2				
					Yield.	Method of	Σ Post- emer- gence	Σ Pre- emer- gence
\mathbf{R}_1	\mathbf{R}_2	R 3	R	M.P., ° C.	77 77	Preparation	Activity	Activity
CH ₃	Н	Н	2,6-Dimethylphenyl	128-30	70	Α, Χ	0	21
CH 3	Н	Н	Н	148.5-50.5	60	F, X (3)	0	0
CH ₃	Н	Н	2,6-Dichlorophenyl	1479	16	A, X		21
CH ₃	Н	Н	2,5-Dimethylphenyl	84-5	68	Α, Χ	19	47
CH ₃	Н	Н	2-Methyl-5-chloro- phenyl	74–6	27	Α, Ζ	21	44
CH ₃	Н	Н	3-Chlorophenyl	118 –2 0	24	Α, Ζ	31/32	40
CH ₃	Н	Н	3,4-Dichlorophenyl	132-4	85	F, X	36	45
C_2H_5	Н	Н	3,4-Dichlorophenyl	97-8.5	71	F, X	34	17
C_2H_5	Н	Н	Phenyl	94–5	65	F, X	17	0
C_2H_{δ}	Н	Н	3-Chlorophenyl	93-94.5	70	F, X	20	39
C_2H_5	Н	н	2-Methyl-5-chloro- phenyl	7980	65	F, X	20	45
C_2H_3	Н	Н	2,5-Dimethylphenyl	88.5-89.5	60	F, X	21	44
C_2H_5	Н	Н	2-Pyridyl	94–5/2 mm.«	22	F, X	8	2
C₄H ₉	Н	Н	Phenyl	88-89	50	F, X	3	0
C_4H_9	Н	Н	2,5-Dimethylphenyl	61.5-63	55	F, X	5	33
C_4H_9	Н	Н	3-Methylphenyl	68.5-70	60	F, X	3	0
C_4H_9	Н	Н	2-Methyl-5-chloro- phenyl	47.5-48.5	65	F, X	3	26
C ₄ H ₉	Н	Н	3-Chlorophenyl	97-8	55	F, X	0	0
C ₄ H ₉	Н	Н	3,4-Dichlorophenyl	118.5-20	87	F, X	2/28	0
CH₃S	Н	Н	Phenyl	31-2	60	Е, Х	3	12
CH₃S	Н	Н	2-Methyl-5-chloro- phenyl	867	58	Е, Х	7	4
CH₃S	Н	Н	2,5-Dimethylphenyl	132–4/1 mm.ª	62	Ε, Χ	0	14
CH₃S	Н	Н	3,4-Dichlorophenyl	99-100	60	Ε, Χ	16	11
2,4-Dichloro- phenoxy	Η	Н	Phenyl	73–5	35	Ε, Υ	0	0
2,4-Dichloro- phenoxy	Η	Н	3,4-Dichlorophenyl	95–6	33	Е, Х	0	0
CH₃O	Н	Н	2-Methyl-5-chloro- phenyl	88-9	43	C, Z	4	40
CH ₃ O ^{<i>a</i>} B.p. ° C./mm	Н . Нg.	Н	2,5-Dichlorophenyl	87.5-9	66	C, Z	0	0

	<u> </u>		Table IV.	(Continued)				
R ₁	R ₂	R₃	R	M.P., ° C.	Yield, $\%$	Method of Preparation	Σ Post- emer- gence Activity	Σ Pre- emer- gence Activity
CH ₃ O	Н	Н	3,4-Dichlorophenyl	89–91	60	C, Z	23/32	43
Н	CH_3	Н	2,5-Dimethylphenyl	181-2	17	A, Z	0	1
Н	CN	Н	3-Chlorophenyl	136-8	27	A, Z	0	0
Н	\mathbf{CH}_{3}	\mathbf{CH}_3	2-Methyl-5-chloro- phenyl	132-3	90	Α, Χ	0	0

Table V.	Effect of Substituents on the Cyclopropyl Ring upon Herbicidal Activity of						
N-(3,4-Dichlorophenyl)cyclopropanecarboxamides							

R ₁	Rs	R ₃	М.Р., ° С.	Yield,	Method of Prepara- tion	Σ Post- emergence Activity	∑ Pre- emergence Activity		
Н	Н	Н	130-1	90	E, Z	36	42		
CH ₃	Н	Н	132–4	85	F, X	36	45		
Cl	Н	Н	956	79	Ε, Χ	26	34		
CH ₃ O	Н	Н	89–91	60	C, Z	23/32	43		
C_4H_9	Н	Н	118.5-20	87	F, X	2/28	0		
Phenyl	Н	Н	123-5	48	Α, Χ	0	0		
C_2H_5	Н	Н	97-8.5	71	F, X	34	17		
CH ₃ S	Н	Н	99-100	60	Ε, Χ	16	11		
2,4-Dichloro- phenyl	Н	Н	95-6	33	Ε, Χ	0	0		
Н	CH 3	Н	93-4	88	С, Х	30	25		
Н	Phenyl	Н	168-70	58	D, X	0	0		
Н	4-Pyridyl	Н	241-3	29	A, Z	0	0		
Н	2-Pyridyl	Н	145-6	17	A, Z	0	0		
Н	Cl	Cl	159.5-61	34	В, Х	0	0		
Н	СН	$CH_2C(CH_3)_3$	155–7/1 mm.ª	40	Α, Χ	0	0		
∉ B.n. ° C. mm.	"Bn. °C. mm. Hg.								

" B.p. ° C. mm. Hg.

Table VI.	Best Pre-er (Primary	nergence Compo screen)	unds
Structure	Activity Rating	Structure	Activity Rating
	47		44
	45		44
	45		43
	44		42
	44		42
			42
			40

assimilate carbon dioxide. Isolated chloroplasts when illuminated in the presence of certain oxidants cause reduction of the oxidant with formation of oxygen, thereby simulating photosynthesis. If ferricyanide is the oxidant, the reaction may be depicted as

$$4K_{3}Fe(CN)_{6} + 4K^{+} + 2H_{2}O \xrightarrow[]{light}]{light} 4K_{4}Fe(CN)_{6}$$

$$+ 4H^{+} + O_{2}$$

Certain types of herbicides (phenylureas, amides, phenyl carbamates, s-triazines, and nitrophenols) inhibit this reaction (7, 9, 11, 13, 14) and the degree of inhibition may be measured and expressed as the molar concentration of herbicide required to inhibit the reaction by 50 % ($I_{\varepsilon 0}$ values).

Table X presents the data comparing the I_{50} values of cyclopropanecarboxanilides with other herbicides known to be Hill reaction inhibitors. Previously described techniques were employed (12), with the exception that the ferricyanide reduction was followed

colorimetrically. These data indicate that the cyclopropanecarboxanilides compare favorably with some of the best-known Hill reaction inhibitors.

Acknowledgment

The authors express their appreciation to Donald E. Moreland, Field Crops Department, North Carolina State College, Raleigh, N. C., for determining the molar concentrations for 50% inhibition of the Hill reaction

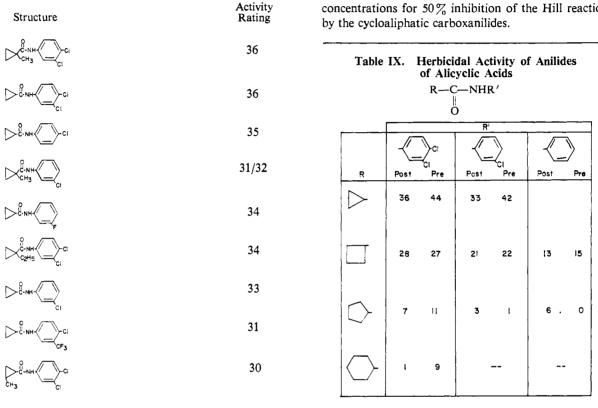


Table VII. Best Postemergence Compounds

(Primary screen)

Table VIII. Herbicidal Activity of Cyclobutanecarboxamides								
R	R ₁	\mathbf{R}_2	M.P., ° C.	Yields,⁴ %	Σ Post- emergence Activity	Σ Pre- emergence Activity		
-CH ₂ C=CCH ₂ Cl	н	Н	60–1	37	14	4		
C ₆ H ₁₁	Н	н	121-3	59	13	15		
	н	Н	89-91/1 mm. ^b	64	3	0		
-CH2CH2OCH2CH2-	Н	н	96-7/1 mm. ^b	55	2	26		
Cyclohexyl	Н	Н	113.5-14	80	7	4		
C(CH ₃) ₃	Н	н	124-5	36	0	1		
CH ₂ CH=CH ₂	н	н	54-55.5	52	6	3		
1-Naphthyl	Н	н	147-7.5	53	4	2		
CH ₂ C ₆ H ₅	Н	н	76-7.5	85	10	0		
2-Pyrimidyl	Н	н	126–9/1 mm. ^b	30	• •	21		
2-Thiazolyl	н	н	132-3	39		23		
3,4-Cl ₂ C ₆ H ₃	Н	Н	102-4	75	28	27		
C ₆ H ₅	Br	Н	8 9 –90	75	9	2		
3,4-Cl ₂ C ₆ H ₃	Br	Н	97-8	72	12	16		
$3,4-Cl_2C_6H_8$	Н	COOH	182-3	87	2	9		
^a All compounds prepared by reaction of appropriate acid chloride with appropriate amine. ^b B.p. ° C. mm. Hg.								

Table X. Inhibition of Hill Reaction of Isolated Chloroplasts by Herbicides

		Molar Concentration	Chloroplast
Herbicide	Common Name	for I_{50}	Source
Cyclopropane carboxanilides			
N -(3,4-Dichlorophenyl)- α -methylcyclopropanecarboxamide		$2.7 imes10^{-7}$	Alaska pea
N-(3,4-Dichlorophenyl)cyclopropanecarboxamide	Cypromid	$5.7 imes10^{-7}$	Alaska pea
N -(3,4-Dichlorophenyl)- β -methylcyclopropanecarboxamide		$1.1 imes 10^{-6}$	Alaska pea
N -(3,4-Dichlorophenyl)- α -methoxycyclopropanecarboxamide		$3.2 imes10^{-6}$	Alaska pea
Other acylanilides			
N-(3,4-Dichlorophenyl)-2-methylpentanamide	Karsil	$5.8 imes10^{-7}$	Turnip
N-(3,4-Dichlorophenyl)propionamide	Stam	$2.5 imes10^{-6}$	Alaska pea
N-(4-Chlorophenyl)-2-methylpentanamide	4-CPMP	$6.4 imes10^{-6}$	Turnip
N-(3-Chlorophenyl)-2-methylpentanamide	3-CPMP	$7.8 imes10^{-6}$	Turnip
N-Phenyl-2-methylpentanamide	PMP	$4.5 imes 10^{-5}$	Turnip
Urea			
1-n-Butyl-3-(3,4-dichlorophenyl)-1-methylurea	Neburon	2.2×10^{-7}	Turnip
3-(3,4-Dichlorophenyl)-1,1-dimethylurea	Diuron	3.3×10^{-7}	Turnip
		1.8×10^{-7}	Alaska pea
3-(3,4-Dichlorophenyl)-1-methylurea	DMU	6.0×10^{-7}	Turnip
3-(<i>p</i> -Chlorophenyl)-1,1-dimethylurea	Monuron	4.1×10^{-6}	Turnip
3-Phenyl-1,1-dimethylurea	Fenuron	$2.8 imes10^{-5}$	Turnip
Triazines			
2-Chloro-4-(2-propylamino)-6-ethylamino-3-triazine	Atrazine	2.5×10^{-7}	Alaska pea
2-Chloro-4,6-bis(isopropylamine)-s-triazine	Propazine	$4.3 imes10^{-6}$	Turnip
2-Chloro-4,6-bis(ethylamino)-s-triazine	Simazine	5.9×10^{-6}	Turnip
2-Methoxy-4,6-bis(ethylamino)-s-triazine	Methoxysimazine	9.3×10^{-6}	Turnip
2-Chloro-4,6-bis(diethylamino)-s-triazine	Chlorazine	$2.7 imes 10^{-4}$	Turnip
Miscellaneous			
3-Cyclohexyl-5,6-trimethyleneuracil		$8.5 imes 10^{-7}$	Turnip
5-Bromo-3-sec-butyl-6-methyluracil	Bromacil	1.4×10^{-6}	Turnip
5-Bromo-3-isopropyl-6-methyluracil	Isocil	2.7×10^{-6}	Turnip
Isopropyl N-(3,4-dichlorophenyl)carbamate	3,4-DCIPC	$3.3 imes 10^{-5}$	Turnip
Isopropyl N-(3-chlorophenyl)carbamate	3-CIPC	2.9×10^{-4}	Turnip
Isopropyl N-phenylcarbamate	IPC	1.2×10^{-3}	Turnip
4,6-Dinitro-O-sec-butylphenol	DNBP	$1.3 imes 10^{-5}$	Turnip

Literature Cited

- (1) Brown, W. G. (to Commercial Solvents Corp.), U. S. Patent **2,784,226** (March 5, 1957).
- (2) Bunce, S. C., Cloke, J. B., J. Am. Chem. Soc. 76, 2244 (1954).
- (3) Burger, A., Yost, W., *Ibid.*, **70**, 2198 (1948).
 (4) Cannon, G. W., Santilli, A. A., Shenian, P., *Ibid.*, 81, 1660 (1959).
- (5) DeFeo, R. J., Strickler, P. D., J. Org. Chem. 28, 2915 (1963).
- (6) Dubrovin, K. P., "Clobber, a New Post-Emergence Herbicide," North Central Weed Control Conf., East Lansing, Mich., December 1964. (7) Good, N. E., *Plant Physiol.* **36**, 788 (1961).
- (8) Hart, H., Curtis, O. E., Jr., J. Am. Chem. Soc. 78, 112 (1956).
- (9) Hilton, J. L., Monaco, T. J., Moreland, D. E., Gentner, W. A., Weeds 12, 129 (1964).
 (10) Knowles, E. C., Cloke, J. B., J. Am. Chem. Soc.
- 54, 2028 (1932).

- (11) Moreland, D. E., USDA, North Carolina State College, Raleigh, N. C., unpublished data.
- (12) Moreland, D. E., Hill, K. L., J. AGR. FOOD CHEM. 7, 832 (1959).
- (13) Moreland, D. E., Hill, K. L., Weeds 10, 229 (1962).
- (14) *Ibid.*, **11**, 55 (1963).
- (15) Organic Syntheses, Coll. Vol. III, 213 (1954).
- (16) Ibid., p. 221.
- (17) Schlatter, M. J., J. Am. Chem. Soc. 63, 1733 (1941).
- (18) Woodworth, R. C., Snell, P. S., Ibid., 79, 2542 (1956).

Received for review August 6, 1965. Resubmitted January 30, 1967. Accepted February 15, 1967. Presented in part before the Division of Agricultural and Food Chemistry, 149th Meeting, American Chemical Society, Detroit, Mich., April 1965.